Unit-I

Chapter 1: Linear Programming

1-1 to 1-58

Syllabus:

- 1.1 Various definitions, statements of basic theorems and properties, Advantages and Limitations,
- 1.2 Application areas of Linear programming
- 1.3 Linear Programming-Concept
- 1.4 Simplex Method and Problems
- 1.5 Two Phase Simplex Method and problems

Note: Case study-based problems

Extra Readings : Formulation of Linear programming, Solution of LPP using Graphical method.

1.1	Introduction1-1
1.2	Introduction to Linear Programming Problem (LPP)1-2
1.2.1	Solved Examples1-3
1.3	Graphical Method to Solve LPP1-5
1.3.1	The Canonical Form1-11
1.3.2	The Standard Form of LPP1-11
1.4	Basic Terminology1-11
1.4.1	Alternate Solution1-22
1.4.2	Unbounded Solution1-23
1.5	Simplex Method to Solve Minimization Type LPP1-24
1.6	The BIG-M-Method
	(Use of Artificial Variables)1-26
1.6.1	Solved Examples1-26
1.7	Duality1-33
1.7.1	Advantages of Dual1-34
1.7.2	Solution Primal using Dual1-36
1.8	The Two Phase Method1-45
1.9	University Questions and Answers1-57

Unit-II

Chapter 2 : Markov Chains & Simulation Techniques 2-1 to 2-18

Syllabus:

- 2.1 Markov chains : Applications related to technical functional areas,
- 2.2 Steady state Probabilities and its implications,
- 2.3 Decision making based on the inferences Monte Carlo Simulation.

Extra Readings : Application of Markov chain in Queuing theory, Simulation techniques used in Machine learning and bioinformatics.

2.1	Introduction2	-1
2.2	Basic Terminology2	-1
2.3	Multi-period Transition Probabilities2	-2
2.4	Steady State (Equilibrium) Condition for Markov Chain	-6
2.5	Applications of Markov (Chain) Analysis2	-8
2.6	Simulation2	-8
2.6.1	Types of Simulation2	-8
2.6.2	Steps of Simulation Process2	-8
2.6.3	Advantages and Disadvantages of Simulation2	-9
2.7	Simulation Model or Process2	-9
2.7.1	Monte Carlo Simulation Model:2	-9

Unit-III

Chapter 3: Sequential Model and Related Problems 3-1 to 3-14

Syllabus:

- 3.1 Processing n jobs through 2 machine
- 3.2 Processing n jobs through 3 machine
- 3.3 Processing n jobs through m machine

Extra Readings : Processing of n jobs through m Machines

Chapter 5: Game Theory		5-1 to 5-26
	Unit-V	
4.10	Project Time Cost Trade - off4-	
4.9.1	Steps in Solution of PERT Problem	4-11
4.9	Project Evaluation and Review Technique (PERT)	4-11
4.0		
4.8	Critical Path and Varies Floats for Activities4-8	
4.7	Network Analysis	4-6

Table of Contents

- 4.3 Time estimates (Forward Pass Computation, Backward Pass Computation.
- 4.4 Critical Path.
- 4.5 Probability of meeting scheduled date of completion,
- 4.6 Calculation on CPM network.
- 4.7 Various floats for activities
- 4.8 Event Slack.

1. 1

- 4.9 Calculation on PERT network.
- 4.10 Application of schedule based on cost analysis and crashing.
- 4.11 Case study-based problems.

Introduction

Extra Readings : Optimal Cost estimation by crashing the network, Explore the MS Project tool.

1.1	iid oddetoiii 1
4.2	Basic Difference Between PERT and CPM4-1
4.3	Phases of Project Management4-2
4.4	Applications of PERT and CPM4-2
4.5	Basic Terminology4-3
4.6	Network Diagram / Arrow Diagram4-4

Syllabus:

- 5.1 Introduction
- 5.2 n X m zero sum game with dominance
- 5.3 Solution using Algebraic, Arithmetic and Matrix strategy

Extra Readings : Learn the difference between Sequential and Simultaneous game

5.1	Introduction5-1
5.2	Competitive Games5-1
5.3	Useful Terminology5-1
5.4	Two Person Zero Sum Game with Saddle Point5-2
5.5	Two Person Zero Sum Game Without Saddle Point5-8
5.6	Algebraic Method for Solving 2×2 Game Without Saddle Point :5-8
5.7	Dominance Method (Solution of m \times n Game without Saddle point)5-12

Unit-VI

Chapter 6: Decision Analysis

6-1 to 6-16

Syllabus

1._1

- 6.1 Introduction to Decision Analysis
- 6.2 Types of Decision-making environment
- 6.3 Decision making under uncertainty and under risk
- 6.4 Concept of Decision Tree

Extra Readings: Decision models in Econometrics and computer science

Ÿ	Optimization Techniques (SPPU-MCA)	3	Table of Contents
6.1	Introduction6-1	6.3.1	Decision-Making Under Uncertainty6-2
6.2	Elements of Decision Analysis6-1	6.3.2	Decision Making Under Risk6-4
6.3	Types of Decision-Making Environments6-2	6.4	Decision Tree Analysis12

